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30 CHAPTER 2 — THE MODELING PROCESS

statement of what the model is intended to do. Other disciplines may not
require for publication such a self-conscious and direct statement, but, at
some point, the modelers probably do.

5 Exercises

1. To what extent has Innis incorporated Overton’s criteria for objec-
tives statements?

2. How good was the objective statement of the “doubling time” model?

3. Using Innis’ statement and Overton’s criteria as guides, write an ob-
jective statement for the following problem: “How many cases of
AIDS will occur in Utah in 1999?” Would the objectives change if
the location had been San Francisco? Why or why not? What role
does spatial scale of extrapolation play in this problem?

4. Write an objective statement for the leaky bucket problem of Chapter
1.

5. Write an objective statement for this problem: “What should be the
best grazing pressure on the Foobar National Forest to simultaneously
maximize cattle production and forest quality?”

6. We noted in the discussion of the model of the world’s population
that our abilities to validate the model were limited by our inability
to replicate the system. Under what circumstances, if any, is it worth
while to model systems that cannot be replicated or tested using
rigorous statistical methods?

7. Read pages 10-13 in Reckhow and Chapra (1983b) and decide if there
is 2 need to distinguish wvalidation and corroboration.

8. Read an article in a current journal describing a model and critique
the objective statement. In the models described in the chosen jour-
nal, how many discuss validation?
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Chapter 3

Qualitative Model Formulation

- | _J

How to Eat an Elephant

B UILDING a model is like eating an elephant: it’s hard to know where
to begin. As with almost all problems, it is helpful to break a big
problem into smaller, more manageable pieces. We do this with model for-
mulation (Fig. 2.1) by first creating a qualitative model and then converting
this to a quantitative model (Chapter 4). Qualitative model formulation,
then, is the conversion of an objective statement and a set of hypotheses
and assumptions into an informal, conceptual model. This form does not
contain explicit equations, but its purpose is to provide enough detail and
structure so that a consistent set of equations can be written. The quali-
tative model does not uniquely determine the equations, but does indicate
the minimal mathematical components needed. The purpose of a qualita-
tive model is to provide a conceptual framework for the attainment of the
objectives. The framework summarizes the modeler’s current thinking con-
cerning the number and identity of necessary system components (objects)
and the relationships among them. :
Qualitative model formulation is not always explicitly performed. If a
modeling project is simple enough, elaborate plans for writing the equations
are not necessary. Most of us do not need detailed instructions for getting
out of bed in the morning. But with large models having many variables
that interact in complicated ways among themselves and with the envi-
ronment, it is easy to become confused. By providing an overview of the
system, a qualitative version of the model can help reduce this confusion.
Qualitative models can take any form (except mathematical), but dia-
grams are the usual representation. Given our emphasis on differential
equations and compartment models, three important diagrammatic schemes
are: block structure diagrams (having origins in electrical engineering and
analog computers), Odum energy flow diagrams (similar to block structure
diagrams but based on energy flow within ecosystems), and Forrester di-
agrams (having origins in systems analysis and operations research). All
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Figure 3.1: A simple ecosystem in which carbon moves among the labeled components.

three share the ability to represent systems as a set of objects and their
interrelations. We will stress the latter here, but the interested reader
can learn more of block structure diagrams in (Shannon 1975) and Odum
energy diagrams in (Odum 1971).

3.2 Forrester Diagrams

Forrester diagrams (Forrester 1961) were invented by Jay Forrester, an
MIT professor famous for work on early digital computer hardware and the
simulation of social systems. Forrester diagrams are designed to represent
any dynamic system in which a measurable quantity flows between system
components.

Consider a simple ecosystem in which carbon flows between a popu-
lation of grass and a population of deer (Fig. 3.1). Let us suppose that
our objectives suggest that only deer and grass are interesting and that
the grams of carbon in these two components are the relevant measures.
Because of our simplification, we will not explicitly consider other com-
ponents that may have large quantities of C (e.g., atmospheric CO, and
excretion by deer). Consequently, two numbers (grams of carbon in grass
and grams of carbon in deer) completely specify the condition of the sys-
tem at a moment in time. By accepting this simple view of the ecosystem,
we are stating that other variables or quantities are irrelevant and do not
add to our knowledge of the system. For example, other consumers (e.g.,
insects), producers (e.g., the tree), or other variables (e.g., nitrogen) are
not important. Moreover, these two numbers may change in time so that
the condition of the system is dynamic. The exact nature of the temporal
changes depends on the rates of flow of carbon into the grass component
(growth) and into the deer population (grass consumption).
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Figure 3.1 is a crude qualitative model in diagram form of the system,
but since it makes specific reference to deer and grass, it has limited appli-
cation to other systems. We want an abstraction of the basic concepts of
system components and material flows to obtain a general tool for qualita-
tive modeling of systems. Forrester diagrams are such an abstraction.

To understand the basis of the diagramming scheme, recall the general
definition of a system: a collection of objects and relations among them.
There are two kinds of objects: (1) those that are inside the system and are
explicitly modeled and (2) those that are outside the system and are not
modeled. The internal objects are called state variables and are those that,
taken all together, characterize the condition or state of the system. In the
example above, the state variables are grass and deer. These variables are
dynamic and change their state over time. (See Caswell et al. 1972 for a
more rigorous definition of state variable.)

The outside or external variables are either sources or sinks and are not
modeled explicitly (i.e., no equations are written for these). For example,
atmospheric CO; is both a source and a sink. It is a source because it
represents an unmodeled pool of C that is an input to a state variable
(grass). It is also a sink since gaseous COg is a product of deer respiration.

Each state variable is described by its current level of the quantity of
interest: the quantity in which units we measure the state of the variable
(e.g., numbers of individuals, grams of carbon, temperature, etc). Relations
between system objects have two forms: (1) the direction and rates of flow
between the quantity of interest and the objects and (2) the influences of
a variable (e.g., the quantity of interest) on the rates of flow.

Forrester diagrams are direct graphical representations of these con-
cepts that permit easy translation to mathematical equations. They can
be thought of as a graphical “language” with phrases that can be connected
in certain prescribed ways. The graphical vocabulary items of the language
are listed in Fig. 3.2 and are described below.

Objects System objects are the state variables of the system (called levels
by Forrester). They are the primary system components whose values over
time we wish to predict. They are dynamic quantities and are represented
by a rectangular box (Fig. 3.2a). The box should contain a mnemonic name
for the object and its unit of measurement. Many descriptions of models
of this type refer to levels as compartments, and the type of models being
represented by Forrester diagrams as compartment models.

Material Flows Flows are one manifestation of relations between system
objects, which we will call a flow relation. A flow is represented as a solid
arrow (Fig. 3.2b) and identifies the pathway over which the quantity of
interest (e.g., grams of carbon) flows. In most models, the rate of flow is a
dynamic quantity that is influenced by system components, and this rate
is symbolized by a control valve (the “bow-tie”) on the flow relation.
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Figure 3.2: The basic components of a Forrester diagram.

Information Flow or Influences The second manifestation of relations be-
tween objects are the effects that the quantity of one object has on the rates
of inputs to or outputs from another object (e.g., effects on growth rates).
These are control relations. State variables affect the control valves of
material flows of other state variables (including themselves). These influ-
ences are represented as information transfers (dotted arrows in Fig. 3.2¢)
connecting state variables and control valves. The tail of the arrow indi-
cates the influencing component and the head of the arrow indicates the
affected rate. Possible sources of information transfer are state variables,
parameters, driving variables, and auxiliary variables or equations.

Sources and Sinks Objects that are defined to be outside the system of
interest, but which are inputs to state variables or outputs from state vari-
ables, are represented as “clouds” (Fig. 3.2d). They are not state variables
since they are not modeled explicitly and are not represented by dynamic
equations. (Hence, they are nebulous and vague — traits well represented
by clouds.) Sources or sinks cannot be involved in an information transfer.
That is, they cannot alter a rate, nor can their condition be altered.

Parameters Constants in equations are noted in the diagrams by small
circles with lines (Fig. 3.2¢). They invariably are used as the tail of an infor-
mation transfer, since their values influence flow rates and other equations
within the model. Since they are constants, their values are not changed
by an information transfer.

Rate Equations Total (or absolute) rates of input to, or output from, a
state variable are described mathematically with rate equations. It is useful
to identify and label these explicitly by modifying the control valve symbol
(Fig. 3.2f). The equations usually describe information transfers from state
variables and parameters.
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Auxiliary Variables and Equations Auxiliary variables (large circles, Fig.
3.2g) are variables that are computed from an auxiliary eguation. The
auxiliary equation can be a function of other auxiliary variables, state vari-
ables, driving variables, and parameters. Auxiliary variables change over
time because they depend on either (a) a state variable, (b) a driving vari-
able that depends on time, or (c) an auxiliary variable that depends on a
state variable or driving variable. Auxiliary variables are never constants,
nor are they state variables.

Auxiliary variables are primarily used to simplify the writing of rate
equations. In this use, they may be substituted into the equation, but
they are isolated for clarity or computing efficiency (they may be used by
several state variables). Consequently, they are often shown influencing
rate equations. A secondary use is to convert, for output purposes, a state
variable or another auxiliary variable.

Driving Variables Dynamic events that relate to variables that are not
state variables (e.g., season or temperature in some models) are often used
as forcing functions. These driving variables are represented as large dia-
monds (Fig. 3.2h). Driving variables may take as input only other driving
variables. Usually, they have no inputs and time is assumed to be a com-
ponent of the variable (e.g., temperature values on different days). Here
are two examples when one driving variable may influence another: (1)
A driving variable of time could influence a driving variable that specifies
temperature over space. The temperature at depth (space) in a water col-
umn could be influenced by season (time): different temperatures at depth
at different seasons. (2) A driving variable of time at one scale (slow)
could be used to determine a variable that occurs at a faster time scale
[e.g., season (a slow time-dependent driving variable)| can influence hourly
temperature values (a fast time-dependent driving variable). The units of
the driving variable (e.g., time, space) should be specified in the diagram.

Examples

As illustrations of this diagramming. technique, we consider some simple
examples. '

3.3.1 Grass-Deer “Ecosystem”

Consider a system composed of grass and some deer that eat the grass
(Fig. 3.1). For the sake of definiteness, we will make the following biological
assumptions.

1. The per capita rate of growth of grass (g C produced per g C of
existing grass) is constant. Therefore, the total growth will be the
per capita rate times the total amount of C present.

2. The only loss to the quantity of C in the grass population is by deer
consumption. :
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Figure 3.3: Forrester diagram for the grass—deer ecosystem. Solid arrows are pathways
for C flow; dotted arrows represent relations between levels and input or output rates
as hypothesized. (Numbered ellipses on information flows are not part of Forrester
diagrams, but are used for explanatory purposes only.)

3. Deer compete with one another for grass so that, as the quantity of
deer increases, each deer receives less C.

4. Deer excrete or respire a fixed proportion of their existing C as either
atmospheric C or solid/liquid waste.

None of these hypotheses are detailed enough to allow us to uniquely define
the equations, but they do permit us to draw the Forrester diagram in
Fig. 3.3.

The assumptions indicated only two state variables: grass and deer.
Therefore, there are only two boxes (levels) in the Forrester diagram. Also
from our assumptions, there are only three flow relations: source to grass,
grass to deer, and deer to sink. The diagram implies that any other flows
are assumed to be unimportant to the objectives of the model. For ex-
ample, we explicitly precluded C from flowing directly from grass back to
the atmosphere or another sink. Information transfer 1 is a diagram of the
concept that total grass growth depends on the amount of grass present.
Information transfer 2 is similar, but we know from our verbal statement
that deer are competing with one another, and grass is not competing
(per capita rates are constant). Therefore, given the similarity of infor-
mation transfers 1 and 2 (Fig. 3.3), it is clear that different hypothesized
control relations can have the same Forrester diagram presentation. This
implies that a single Forrester diagram can represent many different sets
of hypotheses. Forrester diagrams do not uniquely determine the model
equations. Information transfer 3 represents the effect of deer on the loss
rate of C from the deer population. The verbal statement of this control
relation is similar to that for grass growth rate, so the information transfer
arrow is similar.

3.3.2 Population Growth with Explicit Birth and Death

To demonstrate the relation between diagrams and equations, the next
example will start with an equation and produce a consistent diagram.
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Figure 3.4: Forrester diagram for one form of the density-independent population growth
model.

The classic, density-independent population model written as a finite
difference equation (FDE) is Ny, = N;-+7Ny, where r is the net per capita
growth rate. Suppose we reparameterize it using the identity r = b ~ d,
where b is the per capita birth rate, d is the per capita death rate, and
both are positive quantities:

Nt+1 = Nt + bNt - dNt (31)

Note first that there is a single state variable (IV); therefore there will
be a single box in the Forrester diagram. In general, there will be exactly
as many boxes (levels) and FDEs as there are state variables. Second, note
that Eq. 3.1 has two components of change: a positive value (bN;) and a
negative value (—dN;). These correspond in Forrester diagrams as inputs
to and outputs from a single state variable. Thus, for this form of the
model, we have a Forrester diagram as shown in Fig. 3.4. Note the use of
clouds (sinks and sources) to represent the origin of newborn individuals
and the destination of dead individuals. '

To illustrate the use of auxiliary variables and equations, consider the
case where birth rates decrease linearly as numbers of individuals increase,
but total death is a simple proportion of the population:

N,
Niy1 = Ny + bN; (1 - ﬁ) —dN;. (3.2)

R

The second (middle) term of the right-hand side is the absolute rate of
births in the population. The third term is the absolute rate of death.
Birth rate is determined by a “reduction factor” that approaches zero as N
approaches a constant K [i.e., (1 — N/K) — 0 as N — K]. Our modeling
objectives might suggest that this is a particularly important quantity (e.g.,
we want to examine a range of functional forms, not just the linear one
above). Consequently, we isolate that subexpression with a special symbol
(R) and we treat it as an auxiliary variable. Figure 3.5 shows the Forrester
diagram for this model. Note that it is similar in form to Fig. 3.4, but
that we have used an auxiliary variable to represent the effect of density
on the reduction factor. The “effective” per capita birth rate is bR, where
b is the maximum per capita birth rate. Note that R is a function of
N (state variable) and K (a parameter), so information transfer arrows




38 CHAPTER 3 — QUALITATIVE MODEL FORMULATION

DX Birth]
2
-»X Deatn]
T3
Py
]
x|z

Reduction
fFaclor
R

Figure 3.5: Forrester diagram for one form of density-dependent population growth
model.

connect these entities with R.

It is somewhat a matter of taste to separate R and b. Alternatively, we
could draw the diagram using a different auxiliary variable, perhaps called
“effective per capita birth rate,” corresponding to the variable
b(1 — N/K). This would require a minor modification of the control re-
lations (information transfer arrows). Finally, it is possible to draw the
Forrester diagram for Eq. 3.2 without any auxiliary variables; it depends
on the emphases the diagrammer wishes to achieve.

3.3.3 Net Population Growth

The above models used explicit birth and death to show the relations be-
tween the parameters governing increases and decreases, and the input and
output arrows in the diagrams. The typical presentation of these models
subsumes birth and death into a net rate parameter r, which may be pos-
itive or negative. For these forms, the corresponding diagrams for the two
models (Fig. 3.4 and Fig. 3.5) are shown in Fig. 3.6. Note the double-
headed material flow arrows used to indicate that the parameter r controls
both the inflow (away from source) as well as outflow (toward the sink).
The single cloud serves a double purpose here as both sink and source.

@ e Oy ) .

Figure 3.6: Forrester diagrams for density-dependent (2) and density-independent (b)
growth using the normal parameterization.
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Figure 3.7: Forrester diagram showing multiple state variables. The set of three offset
boxes represents three state variables all of which have the same relations (inputs and
outputs) to other state variables in the system.

3.3.4 Multiple State Variables

It is often clearer to isolate different inputs and outputs to a state variable,
even though they may be additive and could be lumped. This may be
important if the controls on the different rates vary significantly, usually
due to different parameters. This is diagrammed by multiple material flows
into or out of a level.

When a model has more than one state variable (e.g., an ecosystem
model with equations for plants, herbivores, and carnivores), then each ob-
ject is represented by a box (level) that connects with the others according
to the flow of material (energy) defined by the relations (i.e., foraging rela-
tionships). Figure 3.7 illustrates this for a simple case. The critical point
for models of this type is that the units of state variables and the units of
flow must agree. Some models have state variables that possess identical
inputs and outputs (e.g., discrete soil layers in a water flow model); to
simplify the diagram, these are shown as offset boxes (Fig. 3.7). A similar
scheme can be used for auxiliary variables.

A more complicated case is illustrated in Fig. 3.8 for a simple agro-
ecosystem model in which there are fertilization regimes, pests, and crop
harvesting schedules. In this model, suppose the broad objective is to deter-
mine the effects on profits of different schedules of fertilizer and pesticide
applications to fields of alfalfa. By “schedule,” we mean the timing and
amounts of applications. The major pests of alfalfa are weevils and aphids,
but these are dynamic since pesticides will kill some of them. So, at least
one state variable must represent the pests. We are also interested in the
effects of fertilizer applications, but this also will be dynamic (it is applied
at certain times and in variable amounts). Consequently, another state
variable should be the soil nutrient pool. As we are primarily interested in
the profits of farmers, we will need to know both the amounts of crops in
the field and the amounts harvested. :

Thus, the state variables are: nutrients, insect pests, field alfalfa, and
harvested alfalfa. All of these must have common units, so for the sake
of the example, we will assume that nitrogen is the limiting nutrient to

~ be added and that all other state variables will be quantified in units of
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Figure 3.8: Forrester diagram for a hypothetical agroecosystem model showmg multiple
state variables of an agricultural system.

g N/hectare. These are not the most natural units by which to measure
alfalfa and insect pests, but we can always use a conversion factor (auxiliary
variable) to create other units.

The scheduling of management events such as pesticide application and
fertilization is represented by driving variables, as are natural events such
as season and temperature (Fig. 3.8). The objectives state that one of our
primary interests is farmer Profit. Because we have chosen the dynamics to
be stated in units of g N/ha and the units of profit are dollars, we need
to convert from g N/ha harvested to dollars. To accomplish this, we use
auxiliary variables such as Fertilization Cost ($/ha), Field Size (ha), Alfaifa
Price ($/g N), and so on (Fig. 3.8).

The diagram is not complete because we have omitted the parameters,
but without more specific hypotheses on the dynamics of the components
it is difficult and not useful to add this facet of Forrester diagrams. The
reader should study Fig. 3.8 so that the components (levels) and flows
(material and information) are clear. In particular, it should be evident

3.3. Examples 4

how a mathematical model based on this diagram will address the original
objectives.

3.3.5 Multiple Flow Variables and Units

When different units on flow variables are modeled (e.g., g N and g C or
blood pressure and blood oxygen in a physiological model), parallel models
(or multiple models, Rideout 1991) must be used to avoid having “apples”
flow into “oranges.” The dynamics of many biological processes depend
on several interacting variables. There are two broad applications of this
concept in modeling: (1) the variables are at the same level of biological
organization but may interact in their influence on the dynamics, or (2)
the variables are at different levels of organization, but both are needed to
address the model objectives.

Two variables (A and B) are on the same level of biological organization
if all of the measurements that can logically be made on A can also be made
on B, and there are no measurements that can be made on B that cannot
be made on A. So, for example, two chemical molecules (CO2 and H,0) are
on the same level because we can measure on both such things as molarity,
boiling point, molecular weight, and so on. In contrast, an individual or-
ganism and a population of organisms are on different levels of organization
since we can measure population growth rate on the population, but not
on a single organism.

Variables that are on the same level of organization may interact to
affect some biological process negatively (negative feedback), positively
(synergism), or independently (substitutable). For example, the electri-
cal potential across the membrane of a nerve cell is determined by the
difference between the net charge inside the cell and the net charge outside
the cell. Therefore, two variables that might be modeled and that interact
negatively are positive ions exemplified by potassium (K+) and negative
ions such as chloride (C17), since the net charge is the sum of positive and
negative ions. In other situations, two different variables might comple-
ment each other and enhance the rates of change of biological processes
[e.g., nerve cell activity and electrical potential and the different forms of
positive ions: K+ and sodium (Na*t)]. In still other systems, the two vari-
ables may influence dynamics independently, for example, grass species A
and B may each increase deer growth rates by an equal amount.

In all of the above examples, it is conceivable (but not necessary) that
a model would portray the dynamics of both quantities (K* and Nat,
or species A and B). In all three possibilities, if we wish to describe the
dynamics of the affected process as influenced by the variables, then we
must describe the dynamics of the individual variables and their effect on
the process. Therefore, since the physical quantities cannot flow among
themselves (i.e., g K cannot flow from a compartment containing g Na),
we represent the separate dynamics as parallel models.
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Figure 3.9: Forrester diagram when multiple flow variables are used. Unlabeled material
transfers are assumed to be losses or gains caused by ion pumping.

An example of variables at different levels of organization is variables
describing the size of individuals and population size. In models in which
the growth rate of the population is influenced not only by the current
numbers of individuals in the population, but also by the average body
size (e.g., through the feeding rate), both quantities must be modeled.
Obviously, these are two very different kinds of quantities and it is absurd
to suppose that they can be related by a material transfer (solid arrow in a
Forrester diagram). It makes no sense to say that average body size “flows”
into numbers of individuals. Consequently, in a model, these two variables
must be kept separate.

To illustrate this concept graphically, consider a very simple model of
nerve cell activity. The activity level is measured as the electrical poten-
tial across the nerve cell membrane. This is determined by the relative
concentration of K¥ and Na* on the inside. Ions of K and Na flow into
the cell through ion-specific channels at rates that depend on the current
electrical potential of the cell. Figure 3.9 shows one implementation of the
integration of the dynamics of K and Na to determine electrical potential.
Since K and Na are different quantities, they are not interchangeable and
therefore must have different inputs, outputs, and level representation.

Care must be exercised when diagramming to recognize differences in
units between state variables. Units that are superficially the same can
in some circumstances be completely different. Often these differences are
hidden by the mathematical equations. For example, if our interest is in
the flow of carbon between components of a plant (e.g., leaves and roots)
in a plant growth model, then an atom of carbon in the leaves can actually
become incorporated into the roots. In contrast, suppose our interest is in a
model of the population dynamics of a species of plant and its herbivore and
the “flow” variable of interest is numbers of individuals in each population.
It does not make sense to say that individual plants flow into individual
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Figure 3.10: Simplified Forrester diagram for linked population models based on numbers
of individuals.

consumers. The biomass of the plant in fact does become incorporated into
the biomass of individual herbivores, but the numbers in the population
are created by processes of birth and death. The basic concept here is
one of “conserved” and “nonconserved” flow quantities. Grams of carbon
is a conserved quantity; it is the mass of a physical object. And, except
under unusual physical circumstances, an atom of carbon is never created
or destroyed. Numbers of individuals are not conserved in the same way.
Prior to birth the individual did not exist, although all of its atoms were
present in other forms. At its death, the individual is destroyed, but its
constituent atoms persist.

This distinction influences the way Forrester diagrams are drawn for
some types of models. In predator—prey models, when numbers of indi-
viduals are modeled, the units are actually numbers of prey individuals
and numbers of predator individuals. These units are as incompatible with
each other as were the units in Fig. 3.9 and the diagram should use parallel
models. Consequently, we should use a Forrester diagram similar to the
simplified form shown in Fig. 3.10.

Errors in Forrester Diagrams
Below is a short list of some of the errors that can be made in drawing

Forrester diagrams (see Fig. 3.11).

1. Using any symbols other than those defined in Fig. 3.2. For exam-
ple, there is no symbol like a solid line with no arrowhead attached
(Fig. 3.11a).

2. Failing to label all boxes, variables (auxiliary and driving), and pa-
rameters with names and units (where appropriate, Fig. 3.11a).

3. Showing sources or sinks influencing rates (Fig. 3.11b).
4. Showing rates influencing state variables (Fig. 3.11c).

5. Showing material flows (solid arrows) between objects other than
state variables and sources and sinks (Fig. 3.11d).
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Figure 3.11: Examples of incorrect Forrester diagram fragments.
6. Showing an influence on a quantity that cannot change (e.g., a pa-
rameter, Fig. 3.11d).
7. Showing information flows between state variables (Fig. 3.11e).
8. Using incompatible units of flows or state variables (Fig. 3.11f).

9. Using state variables that are not in the model (objectives or equa-
tions) or not including state variables that are in the model.

3.5 Advantages and Disadvantages of Forrester Diagrams

Many modelers and theoreticians do not use Forrester diagrams and believe
they only get in the way. There is an important element of truth in this
view. The equations are the primary objects of interest. Their solutions,
not the diagram, produce the output used to address the model objectives.
Moreover, the diagrams are not always a compact representation of the
model. As the number of state variables, parameters, and relations between
objects become large, the size of the diagram increases. Complex diagrams
can span several pages, in which case much of the heuristic value is lost.

There are, however, three situations in which Forrester diagrams are
useful. First, in learning the rudiments of the modeling process, it is help-
ful to separate the trauma of mathematical equations from the conceptual
issues of the nature of system objects, the characteristics of the material
flows between them, and the controls on the dynamics by internal influ-
ences. A graphical language has this potential.

Second, many people who are not mathematicians and to whom a model
must be explained react favorably to the graphical representation. For most
variables and flows, there is a natural correspondence between a material
flow and a physical or biological process (e.g., consumption in a foodweb),
or between a state variable (boxes) and a compartment (e.g., population).
These are concepts with which most people have some experience. As a
consequence, understanding is more quickly attained, and constructive crit-
icism (or, even, agreement) is more readily achieved. Moreover, although
mathematics offers opportunities for an extremely compact representation
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of complex relationships, models attempting to achieve a high degree of
precision or realism will often require complicated equations. The mathe-
matical expressions for driving variables are often an example of this since
they can represent seasonal effects on physical variables such as tempera-
ture. Forrester diagrams can reduce some of this complexity by subsuming
the mathematical details in a simple symbol.

Finally, Forrester diagrams can be a valuable aid in organizing the com-
puter simulation program. Each level effectively becomes a program mod-
ule; the set of input and output arrows are components that increase and
decrease the finite difference equations. The parameters are the data on
which program module operates. Input information flows and parameters
indicate arguments to the subroutine; output information flows indicate
subroutine side effects (changed variables).

Clearly, there is a point at which diagram complexity obfuscates the
basic structure of the model and frustrates attempts to effectively com-
municate. Just as we must provide objectives for models, we must also
recognize our objectives in presenting a model in one form or another.
The choice will depend on whether we are communicating with politicians,
managers, mathematicians, computers, or our biologist colleagues.

Principles of Qualitative Formulation

The first rule of discovery is to have brains and good luck. The second
rule of discovery is to sit tight and wait for a bright idea.
— Polya (1973)

Qualitative model formulation is one of the sub-problems in the modeling
activity. We wish to discover the simplest description of a system that
will satisfy the objectives. This section describes a few basic principles
that apply to all attempts to formulate a qualitative compartment model
using Forrester diagrams. Many of the principles will also apply to other
modeling approaches. Based on the Forrester diagrams shown thus far, it
should be clear that the purpose of the principles is to help you

¢ Identify the state variables (levels)

e Identify the flows among the state variables
Identify the controls on the flow rates
Identify the auxiliary and driving variables.

To accomplish the above, answer the following questions.

1. What are the questions to be answered? Write down all the questions
for which the objective requires answers. If you cannot do this, then
you do not understand the problem. For example, in the population
doubling model, the question was: “When (at what time) will the
population be twice its current value?”
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2. What quantities are needed to answer the questions? In compartment

models (and almost all others), objective questions are answered with
specific numbers or series of numbers. Write down the required quan-
tities and their units.

In the population doubling problem, it is the “year” when the
population has doubled. The size of the population at doubling is of
minor concern in this problem (indeed, given the initial condition, it
is trivial to compute). '

. What equations will answer the questions? Can you write an explicit

dynamic equation (e.g., finite difference equation) whose value at
some time will constitute an answer? In the population doubling
problem, the answer is “no.” We did not solve the problem by writing
an equation describing the doubling time. We wrote an equation for
population growth and from this determined doubling time. If the
question had been, “What will the population size be in 19997?” then
a dynamic equation would answer it.

If you can, in principle, answer the question directly with a dy-
namic equation, then this is at least one of the state variables in
the model and it becomes a level in a Forrester diagram. (You do
not write the equation at this stage, but simply recognize that such
an equation, when written, will answer the question.) If a dynamic
equation will not immediately answer the question, then (a) you need
an auxiliary equation to compute the answer from another variable,
and (b) you need another quantity and state variable that will serve
as input to the auxiliary equation. An information flow (dotted line)
will connect these two objects. Figure 3.8 illustrates the concept in
the relation between Harvest (g N) and Profit (§). The units of the
state variable and the auxiliary variable will almost certainly be dif-
ferent, for otherwise a dynamic equation would have answered the
question.

. What other primary flow quantities are needed? From the objectives

and prior knowledge or data, write down the quantities that will low
into and out of the state variables that contribute to the question.
These flows determine the dynamics of the level. The flows will con-
nect to additional levels by material-transfer arrows in the Forrester

- diagram. For descriptive purposes only, we will call these the pri-

mary state variables. In the simple population doubling problem, a
single state variable suffices, so there are no others. In Fig. 3.8, a
single state variable influences the primary quantity needed for the
objectives (Profit). But the objectives refer to pesticide and fertiliza-
tion effects, and we know (or presume) from prior information that
the harvest dynamics will be influenced by the size of the crop in
the field (Field Crop), and this will be influenced by insect consump-
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tion (Pests). Prior knowledge also tells us that fertilizer is applied to
the soil and is subsequently removed from a pool of N contained in
the soil. Thus, we hypothesize that a sufficient model would be one
that contained the state variables (levels) shown in Fig. 3.8 (i.e., Soil
Nutrient Pool, Field Crop, Pests, and Harvest).

5. Is an explicit spatial representation required? Do the objectives refer
to or require knowledge of events at different places? If so, then
a transport model (Chapter 1) may be appropriate or the primary
state variables should be replicated at each discrete spatial location.
Typically, the state variables at the different spatial locations will be
connected by material transfers (immigration or advection).

6. What are the controls on the flow rates between the state variables?
The controls become influences or information transfers in Forrester
diagrams. - For each state variable, list the factors influencing the
rates of flow into the level and influencing the rates of flow out of the
level. In general, there will be four sources of influences: (1) parame-
ters, (2) auxiliary variables whose inputs are from the primary state
variables, (3) driving variables, and (4) inputs (possibly via auxiliary
variables) from state variables other than the primary state variables.
Type (1) is illustrated in Fig. 3.10 by the influence of parameter “c”
on “birth rate.” Type (2) is illustrated in Fig. 3.9 by the loop be-
tween “K,” “Electrical Potential,” and flow rate into “K.” Type (3)
is illustrated in Fig. 3.8 by the influence of “Fertilization” on the flow
rate into “Soil Nutrient Pool.” Type (4) occurs, for example, when
the primary state variables are defined on one level of biological orga-
nization (e.g., population), but secondary state variables at another
level of organization (e.g., individual body size) are required to im-
plement hypothesized flow rate controls at the population level. For
example, populations with large average body size consume resources
faster than populations with small body sizes. If type (4) controls
are present, then the secondary state variables must be implemented
as levels in a parallel model (Fig. 3.9).

7. Do you know any parameter names? If the objectives or prior knowl-
edge suggests important parameters, these should be included in the
Forrester diagram. Most of these do not become known until explicit
equations are suggested for flow rates and auxiliary variables.

§ 3.7 Model Simplification

Thus far, we have emphasized the mechanics of qualitative model formula-
tion. For a number of practical and esthetic reasons, we wish our models
and explanations of biological phenomena to be as simple as possible. On
the other hand, biological systems are complex, having many processes
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and variables that interact in complicated, non-linear ways. It is, there-
fore, natural when creating a model from a general objective statement,
such as we used in our example of pesticide effects on farm profit, to cre-
ate a model that is more complicated than needed or desirable. There is
some evidence that models of intermediate complexity are best (Costanza
and Sklar 1985). Being able to simplify a model is almost as important
as the ability to formulate it in the first place. Think of it as editing the
first draft of an essay. Moreover, in Chapter 2 we stressed the impor-
tance of evaluating alternative models in parallel. An excellent approach
to creating a family of alternative models is to create a gradient from sim-
ple to complex. So, the process of model simplification and its converse,
model elaboration, are valuable tools for hypothesis testing. Logan ( 1994)
has formalized this philosophy in what he calls the composite-modeling ap-
proach. In this approach, one designs an initially large model that contains
most of the relevant processes and relations. Afterwards, one reduces the
large model into progressively simpler, mathematically more tractable ver-
sions that, although simple, maintain links and similarities with the more
complete model. The end result is a family of models and tools each of
which have uses and applications. Because model simplification is central
to these ideas, we now present a few principles for simplifying models (see
also Shannon 1975).

Eliminate State Variables Every state variable must have a dynamic equa-
tion (differential equation or finite difference equation) as well as parame-
ters and initial conditions. There are two ways to reduce model complexity
arising from state variables.

1. Convert a state variable into a constant (e.g., a parameter) or an
auziliary variable. For example, in Fig. 3.8 we represented Profit as
being influenced by harvested crop nitrogen, whose dynamics were
determined by the size of the field crop. However, given that alfalfa
is harvested by mowing and collecting a fraction of the field crop, a
simpler model would be one in which profit is determined from the
current field crop and a parameter representing the simple fraction
harvested. If we wished to retain the concept that harvesting occurs
at fixed time intervals, we could replace the Harvest state variable with
an auxiliary variable that is influenced by Season, Field Crop, and a
parameter representing the fraction of the field crop harvested. Profit,
then, would be determined by season and the harvestable fraction of
field crop.

2. Aggregate state variables. In Fig. 3.8, we separated soil nitrogen and
crop nitrogen to examine the potential interaction between the timing
of applications of fertilizer and pesticide. If we would be willing to
drop this aspect of the objectives, then we could lump plant and soil
nutrients into a single state variable.
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Make “Stronger” Assumptions Complexity also enters models in the form
of the equations and functional relationships. For example, we compared
the models of population growth with and without density effects on re-
production. The former is more complex than the latter. There are several
approaches for simplifying functional relationships, and while we will ex-
plore the quantitative relationships in more depth in Chapter 4, we can list
two possibilities here.

1. Convert functions of state variables into constants. Equation 3.2 hy-
pothesizes that effective birth rate decreases with increasing density.
If we assume that this function does not exist, then we have simply
a constant (r) that describes birth rate (Eq. 3.1).

2. Convert nonlinear relationships into linear relationships. Equation
3.2 is a linear relationship between current population density and
birth rate. It is not difficult to imagine a more complex relationship
that is a curvilinear function. Thus, Eq. 3.2 is already a relatively
simple model.

Remove Temporal Complexity Models with temporal variability have a
layer of complexity that can be eliminated as follows.

1. Convert random models into deterministic models. As discussed briefly
in Chapter 1 and in more detail in Chapter 10, random effects on dy-
namics can be achieved by allowing parameters to vary randomly in
time. These types of models have more parameters than their deter-
ministic counterparts and can produce significantly more complicated
dynamics that require greater effort to analyze and understand. Re-
moving randomness simplifies the model.

2. Conwvert driving variables to constants. Driving variables or other
time-varying perturbations are another means of allowing parameters
and processes to vary in time, due to causes not modeled by internal
system dynamics. Removing these variables will simplify the model
by reducing the number of parameters and amount of data used as
well as simplifying dynamics. The simple population models we have
discussed so far have no driving variables.

Remove Spatial Complexity ~As with time, removing spatial complexity is
an important simplification tool. The usual method is to convert a model
that explicitly models spatial events to one that ignores spatial differences.
In Fig. 3.8, we already made this simplification, because we did not attempt
to model spatial differences within our alfalfa field. If we had incorporated
spatial effects, then (in one possibility) we would have had additional state
variables. This would require, essentially, duplicating the four state vari-
ables shown for each of the spatial areas we wished to discriminate. For
example, we might distinguish the effects of pesticides and fertilizers on
the border of the field from those in the interior of the field. If so, then we
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would need state variables for Pests_Inside, Pests_Border, Field_Crop_Inside,
Field_Crop_Border, and so on. Adding space to a model usually greatly
increases its complexity, so assuming spatial homogeneity is a simplifying
assumption.

Other Modeling Problems

In Chapter 1, we introduced four broad classes of models: compartment,
transport, particle, and finite state. Forrester diagrams were designed for
and are especially useful in describing compartment models. This mod-
eling approach is an extremely powerful and general framework that has
many applications in biology, from ecosystems to enzyme kinetics. It is
most useful when the system can be decomposed into flows of material or
energy among a finite, but possibly large, number of discrete “pools” or
compartments. It can also be used when we are interested in quantities that
superficially do not “flow,” for example, blood or water pressure in animal
and plant physiological systems. By linking many compartments together
in complicated ways, compartment models can address complex intercon-
nection networks (e.g., foodwebs of many species). Compartment models
can also incorporate elaborate control relationships between variables (e.g.,
the relationship between fertilization schedules and profit). Nevertheless,
the remaining three model classes are conceptualizations of systems for
which this approach is not optimal or useful.

3.8.1 Transport Models

Of the remaining three classes of models, transport models are closest to
compartment models. In transport models, we have a substance [energy
(heat) or a quantity of matter] that flows from spatial point to point. A
simple example is the flow of a pollutant along a stretch of river after it
is emitted from a point source (e.g., a sewage outfall). A central concept
shared with compartment models is a quantity that flows, but a major
difference is that there is no clear concept of a finite number of compart-
ments in which the substance resides. Instead, there are, in the continuous
formulation, infinitely many points along the river at which some quantity
of the substance exists. When we model spatial flows across space in this
way, we are using an Eulerian frame of reference: the origin of the spatial
coordinate system is fixed and the substance moves over this coordinate
system.

There are many forces that could influence the flow of the pollutant,
but the following simplified view uses two that will illustrate the qualitative
model formulation. Advection moves the substance with a physical flow of
water from point to point (river flow). Diffusion moves a substance in
any direction according to the concentration of the substance around each
point. Consider an infinitely short segment of the river along its z direction
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Figure 3.12: (a) Flow between imaginary compartments in a continuous one-dimensional
system. (b) Discrete grid system used in two-dimensional transport models. (b) A close-
up of five grid points showing the similarity to compartment models.

(Az — 0). Figure 3.12a illustrates water and pollutant ﬂ9ws between these
infinitely thin segments of river. Since we have rate functions degendent on
two variables (space and time), we use partial differential equations based
on partial derivatives. For functions of two or more variables .[e.g., f (m,.t),
where z is a spatial dimension and t is time], 8f /3t is the partial de.arn-/atlve
of f with respect to ¢ when the spatial variable is held (.:onstant. Sl'Inllaﬂ?’,
Of /0z is the derivative of f with respect to  when ¢ is fixed. Using this
notation, we can write a conceptual rate equation for each segment as:

op(x,t) ( Advection ) B ( Advection )
- In Out

ot
Diffusion Diffusion +
In - Out

Pollutant Pollutant
Creation / =\ Destruction /°’

where p(z,t) represents the concentration of the po]lutan.t in the water at
a point z in space and t in time. Because of the continuous nature of
space in this conceptualization, compartment models do not do well_here.'
[There may, of course, be compartments within the river (e.g., fish t1ss1-1e)
wherein the pollutant is stored which we may wish to model and for which
compartment submodels will be appropriate.] '
However, it happens that many of these models require numeru.:al com-
putations to obtain a solution. This typically requires that we dls?retlze
space by imagining it composed of many very closely spaced grid points at
which we have obtained a numerical solution and know the pollutant con-
centration. Figure 3.12b illustrates this for a two-dimensional transport
model where we assume the advective flow is unidirectional from left to
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right and diffusive flow can occur in both directions.

By discretizing space, we have introduced the element that previously
distinguished the transport model from the compartment model: a finite
number of storage compartments. Figure 3.12c shows a simplified For-
rester diagram that illustrates how a compartment model framework could
describe the system at one grid point. However, even though we can, after
spatial discretization, force the system into the compartment model mode,
this does not mean that a Forrester diagram is a felicitous description of
the modeled system. It illustrates the forces and processes at a point, but
it would be foolish to attempt to represent the spatial scale of Fig. 3.12b
with a series of drawings like Fig. 3.12¢ iterated at each grid point. Since
all discrete points are identical, no new information about the structure of
the model is revealed by Forrester diagrams at different points.

A second kind of transport model uses a much coarser spatial resolution
than that implied by the discretized continuous system above. In ecosys-
tem models, we are often interested in flows of energy or material through
a complex foodweb. The foodweb and other processes affecting dynam-
ics, however, are frequently different in space. For example, an ecosystem
model of a lake would describe nutrient flow from the physical compart-
ments to plants to herbivores and up through several levels of fish species.
Such a model might describe several species at each of these trophic levels,
each having complex equations describing nutrient uptake. However, the
set of species inhabiting the edges of lakes (littoral zone) differs from those
in the open water habitat (pelagic zone), and nutrient inputs from the land
obviously will enter the littoral zone. A modeling approach to this frame-
work is to divide the lake ecosystem into two spatial compartments and to
divide each of these into the trophic compartments of the biotic part of the
system. When such a coarse level of spatial resolution is used, the com-
partment modeling approach is applicable and a Forrester diagram could be
used by separating each biotic compartment in each spatial compartment.

In summary, a compartment model paradigm, in general, and the For-
rester diagram approach, in particular, are not always appropriate. This is
particularly true when the system is modeled as spatially continuous with
small spatial resolution. Nevertheless, at least in early model formulation
stages, the compartment model concept can be useful for transport models.

3.8.2 Particle Models

Particle models describe systems in which the variables are physical ob-
jects (e.g., billiard balls, or individual organisms) that change in some way
according to dynamic equations. This is called the Lagrangian frame of
reference, as opposed to the FEulerian approach of transport models. In
general, there can be any finite number of these objects. The objects are
characterized as having essential properties that are appropriate to the sys-
tem being modeled and that change according to the dynamic equations.
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Most often, especially in physics, the equations define how objects move
through space (e.g., planets in a gravitational force field). In this case, the
essential properties of objects are their physical position in a coordinate
systems [e.g., (z,¥, 2) in a three-dimensional Cartesian space]. But biolog-
ical (and physical) models can use a generalization of this framework to
include not only spatial position, but other essential properties (e.g., phys-
ical properties: mass, momentum, velocity; biological properties: biomass,
water content, hunger level). Recently, considerable interest has developed
in this class of models in ecology using the name “individual-based model-
ing” (Huston et al. 1988; DeAngelis and Gross 1992) and human population
sciences using the name “micropopulation modeling” (Dyke and MacCluer
1973; Ackerman et al. 1993).

Particle-based models that alter physical position do not fit the com-
partment model paradigm well, although it is possible. Figure 3.13 shows
the physical system and a Forrester diagram for a single prey individual
and a single predator individual moving in a 2D space that possesses a
refuge for the prey. The state of the prey and predator is defined by their
position in space [i.e., their (z,y) coordinates]. It is meaningless to speak
of a substance flowing into or out of the “z” or “y” “levels” of the prey
or predator, so here the arrow pointing into the position level indicates a
small increase in the position (e.g., Az > 0) and an arrow pointing to the
cloud indicates a small decrease in the position (e.g., Az < 0).

In addition to the artificiality of interpreting position change as a “flow,”
the compartment model paradigm fails for the same reasons as the dis-
cretized transport model. Typically, particle models simulate hundreds or
thousands of objects. For complete accuracy, the diagram should be iter-
ated for each of these objects just as it should have been iterated at each
spatial point in the discrete transport model. This would add little new
information and, in the case of Fig. 3.13, would require a huge number of
dotted information transfer lines to indicate the effects of distances between
many individuals. So, as with the transport model, Forrester diagrams can
be useful for initial model formulation and detailing a subset of the objects
and interactions. But it is not useful to describe all of the objects this way.

3.8.3 Finite State Models

Of the four classes of models, finite state models are the furthest from com-
partment models. As described in Chapter 1, finite state models have no
explicit representation of a quantity that flows among pools. In the formu-
lation of the model, we articulate the important states a priori and these
are the only possibilities allowed. A useful qualitative tool is the state tran-
sition graph, which serves a role analogous to that of the Forrester diagram
of a compartment model. Each node represents a state and an arrow be-
tween nodes represents possible alteration of the system from the state at
the end of the arrow to the state at its terminus. Simple finite state models
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Figure 3.13: Diagram of physical system and Forrester diagram for a particle movement
model showing a single predator chasing a prey. The Forrester diagram attempts to
represent change in position (Az, Ay) as a flow to a sink (decrease Az) or to a level
(increase Az).

(e.g., Markov processes) are stochastic where the arrow is the probability of
transition from one state to another; only the current state and the prob-
abilities can affect the outcome. Figure 3.14 shows the transition graph
and one stochastic realization for the finite state weather model (Chapter
1). Weather can take one of three states: Good, Intermediate, and Bad.
A simulation of weather using the transitions probabilities shown on the
arrows (Fig. 3.14a) produces a sequence of the three states (Fig. 3.14b).
More complex models are possible where, for example, the state of previ-
ous time steps can affect the transition probabilities, or other events and
conditions in the system can affect the probabilities. These models can be
written as finite difference equations with appropriate discretization of the
states. Similarly, the model can also be represented as a Forrester diagram
(Fig. 3.14c), but it is a clumsy approximation of the transition graph and
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Figure 3.14: A finite state weather model represented as a state transition graph (a),
where the numbers represent the probabilities of the transitions denoted by arrows. (b)

One stochastic realization of the graph showing the resulting dynamics of states. (c) A
Forrester diagram of the model.

the implied flow does not correspond to a physical flow.

1. Assume a substance enters and exits the cell only by passive diffusion.
The rate at which passive diffusion transports a substance across
a membrane is directly proportional to the difference between the
external and internal concentrations. Draw the Forrester diagram for
a model in which the ambient concentration is a constant using one
state variable, one auxiliary variable, and one rate equation.

2. Consider a substance (“A”) that diffuses as above but also is trans-
formed into another substance (“B”). The rate of transformation de-
pends on both the quantities of A and B. Both A and B leave the cell
by passive diffusion. Draw a Forrester diagram.

3. Simplify the model represented in Fig. 3.8.

4. Elaborate the model in Fig. 3.8 to include the use:of a biological
control agent to reduce insect pests on alfalfa. Assume the control
agent is a wasp that lays eggs on pest larvae.

5. The classical Lotka—Volterra predator-prey model is:
Prey: Vi1 = Vi +rV, — aVi P,
Predator: P;y; = P;+ abV,P; — dP,;

Assumingthe units are a conserved quantity (e.g., g C), draw the
Forrester diagram. The parameters are defined as: r = prey per
capita rate of increase, a = rate of consumption of prey by predator,
b = conversion of prey consumed to new predators, and d = predator
death rate. :

6. Discuss the relation between Levins’ concept of model structure based
on generality, precision, and realism and each of the strategies for
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model simplification. Which strategies generate which type of model
structure?

. Draw a Forrester diagram of a model that describes the dynamics of

the vertical position of an aquatic algae cell based on the following
description of flotation in prokaryotic aquatic plankton. Blue-green
algae use gas vacuoles to manipulate their position in the water col-
umn. A single gas vacuole consists of closely packed cylinders each
of which is enclosed in a pseudo-membrane of pure protein. The vac-
uoles are continually produced at a relatively constant rate. The vac-
uoles collapse when their external pressure exceeds a critical thresh-
old. Their gaseous contents are in equilibrium with the surrounding
water. The position of the algal cell is regulated by the number of
vacuoles. At high light intensities, cytoplasmic turgor pressure (ex-
ternal to vacuoles) increases beyond the critical threshold for vacuole
collapse. This both increases the density of the cell medium and
causes the cell to sink. Turgor pressure increases because the light
stimulates the uptake of K* ions and by-products of photosynthesis
(e.g., sugars). At low light levels, the turgor pressure is reduced, the
gas vacuoles increase in number, and the cell is more buoyant.

. Draw a Forrester diagram for the dynamics of blood glucose concen-

tration based on the following simple description of the mammalian
blood sugar regulation system. Ingestion of glucose raises stomach
levels of glucose, which in turn raises blood glucose levels. This causes
the pancreas to secrete insulin, which causes increased transport of
glucose into the interior of cells. There it is either used as a source of
respiratory energy or is stored. In the liver, glucose is stored as glyco-
gen, which is a form that can be easily released to the bloodstream if
blood glucose levels fall below a threshold. The liver acts as buffer to
maintain blood glucose levels within acceptable limits between bouts
of ingestion.

4 N
Chapter 4

Quantitative Model Formulation

N | /

4.1 From Qualitative to Quantitative

O NE way to understand a complex, mathematical model is to stare at
it until it is obvious. This advice can be less than helpful if you do
not know what you are looking for. The approach we follow here exploits
the fact that biological models are composed of a relatively few, recurring
algebraic constructs. Once these patterns are assimilated, building and
reading models becomes a matter of knowing when to use the appropriate
component. '
We cannot begin, however, until we have a qualitative model for a sys-
tem that specifies the objects; their basic, qualitative interrelationships;
and the underlying hypotheses. The next step is to translate these ideas
into mathematical equations. One of the major strengths of Forrester dia-
grams is the relative ease with which the equations can be generated from
the diagram. We can now state a few elements of the method to introduce
the material that follows. :
The boxes of Forrester diagrams represent the objects of interest: the
variables whose dynamic quantities we wish to determine over time. For
each of these, we must supply a state (dynamic) equation that relates the
value of the variable at the next point in the future with the current value
and all of the inputs to and outputs from the variable’s box. Inputs rep-
resent absolute rates of gain, and outputs represent absolute rates of loss.
Each of the rates are, in general, calculated by complex, nonlinear equations
that combine the flow relations and control relations among system compo-
nents. The rate equations will therefore involve the parameters, auziliary
equations, and driving variables as specified by the Forrester diagram. Sum-
ming all of the rate equations for a given state variable yields the net rate
of change for that variable at the current point in time. After incrementing
time, this calculation is repeated using the state variable values from the
previous iteration until the necessary number of solutions is obtained. In
the remainder of this chapter, we will provide some general rules for the




